博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ffmpeg sws_scale函数详解
阅读量:4182 次
发布时间:2019-05-26

本文共 26964 字,大约阅读时间需要 89 分钟。

1. 介绍

如果想在两个AVPixelFormat之间转换,例如将YUV420P 转换到YUV422,亦或者是要改变其大小,放大缩小什么的,就要用到ffmpeg中的swscale函数了,此版本基于ffmpeg 3.3.3版本开发

1. AVPixelFormat定义

enum AVPixelFormat {    AV_PIX_FMT_NONE = -1,    AV_PIX_FMT_YUV420P,   ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)    AV_PIX_FMT_YUYV422,   ///< packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr    AV_PIX_FMT_RGB24,     ///< packed RGB 8:8:8, 24bpp, RGBRGB...    AV_PIX_FMT_BGR24,     ///< packed RGB 8:8:8, 24bpp, BGRBGR...    AV_PIX_FMT_YUV422P,   ///< planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)    AV_PIX_FMT_YUV444P,   ///< planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)    AV_PIX_FMT_YUV410P,   ///< planar YUV 4:1:0,  9bpp, (1 Cr & Cb sample per 4x4 Y samples)    AV_PIX_FMT_YUV411P,   ///< planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)    AV_PIX_FMT_GRAY8,     ///<        Y        ,  8bpp    AV_PIX_FMT_MONOWHITE, ///<        Y        ,  1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb    AV_PIX_FMT_MONOBLACK, ///<        Y        ,  1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb    AV_PIX_FMT_PAL8,      ///< 8 bits with AV_PIX_FMT_RGB32 palette    AV_PIX_FMT_YUVJ420P,  ///< planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting color_range    AV_PIX_FMT_YUVJ422P,  ///< planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting color_range    AV_PIX_FMT_YUVJ444P,  ///< planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting color_range#if FF_API_XVMC    AV_PIX_FMT_XVMC_MPEG2_MC,///< XVideo Motion Acceleration via common packet passing    AV_PIX_FMT_XVMC_MPEG2_IDCT,    AV_PIX_FMT_XVMC = AV_PIX_FMT_XVMC_MPEG2_IDCT,#endif /* FF_API_XVMC */    AV_PIX_FMT_UYVY422,   ///< packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1    AV_PIX_FMT_UYYVYY411, ///< packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3    AV_PIX_FMT_BGR8,      ///< packed RGB 3:3:2,  8bpp, (msb)2B 3G 3R(lsb)    AV_PIX_FMT_BGR4,      ///< packed RGB 1:2:1 bitstream,  4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits    AV_PIX_FMT_BGR4_BYTE, ///< packed RGB 1:2:1,  8bpp, (msb)1B 2G 1R(lsb)    AV_PIX_FMT_RGB8,      ///< packed RGB 3:3:2,  8bpp, (msb)2R 3G 3B(lsb)    AV_PIX_FMT_RGB4,      ///< packed RGB 1:2:1 bitstream,  4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits    AV_PIX_FMT_RGB4_BYTE, ///< packed RGB 1:2:1,  8bpp, (msb)1R 2G 1B(lsb)    AV_PIX_FMT_NV12,      ///< planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (first byte U and the following byte V)    AV_PIX_FMT_NV21,      ///< as above, but U and V bytes are swapped    AV_PIX_FMT_ARGB,      ///< packed ARGB 8:8:8:8, 32bpp, ARGBARGB...    AV_PIX_FMT_RGBA,      ///< packed RGBA 8:8:8:8, 32bpp, RGBARGBA...    AV_PIX_FMT_ABGR,      ///< packed ABGR 8:8:8:8, 32bpp, ABGRABGR...    AV_PIX_FMT_BGRA,      ///< packed BGRA 8:8:8:8, 32bpp, BGRABGRA...    AV_PIX_FMT_GRAY16BE,  ///<        Y        , 16bpp, big-endian    AV_PIX_FMT_GRAY16LE,  ///<        Y        , 16bpp, little-endian    AV_PIX_FMT_YUV440P,   ///< planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)    AV_PIX_FMT_YUVJ440P,  ///< planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range    AV_PIX_FMT_YUVA420P,  ///< planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)#if FF_API_VDPAU    AV_PIX_FMT_VDPAU_H264,///< H.264 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers    AV_PIX_FMT_VDPAU_MPEG1,///< MPEG-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers    AV_PIX_FMT_VDPAU_MPEG2,///< MPEG-2 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers    AV_PIX_FMT_VDPAU_WMV3,///< WMV3 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers    AV_PIX_FMT_VDPAU_VC1, ///< VC-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers#endif    AV_PIX_FMT_RGB48BE,   ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big-endian    AV_PIX_FMT_RGB48LE,   ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as little-endian    AV_PIX_FMT_RGB565BE,  ///< packed RGB 5:6:5, 16bpp, (msb)   5R 6G 5B(lsb), big-endian    AV_PIX_FMT_RGB565LE,  ///< packed RGB 5:6:5, 16bpp, (msb)   5R 6G 5B(lsb), little-endian    AV_PIX_FMT_RGB555BE,  ///< packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian   , X=unused/undefined    AV_PIX_FMT_RGB555LE,  ///< packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined    AV_PIX_FMT_BGR565BE,  ///< packed BGR 5:6:5, 16bpp, (msb)   5B 6G 5R(lsb), big-endian    AV_PIX_FMT_BGR565LE,  ///< packed BGR 5:6:5, 16bpp, (msb)   5B 6G 5R(lsb), little-endian    AV_PIX_FMT_BGR555BE,  ///< packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian   , X=unused/undefined    AV_PIX_FMT_BGR555LE,  ///< packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined#if FF_API_VAAPI    /** @name Deprecated pixel formats */    /**@{*/    AV_PIX_FMT_VAAPI_MOCO, ///< HW acceleration through VA API at motion compensation entry-point, Picture.data[3] contains a vaapi_render_state struct which contains macroblocks as well as various fields extracted from headers    AV_PIX_FMT_VAAPI_IDCT, ///< HW acceleration through VA API at IDCT entry-point, Picture.data[3] contains a vaapi_render_state struct which contains fields extracted from headers    AV_PIX_FMT_VAAPI_VLD,  ///< HW decoding through VA API, Picture.data[3] contains a VASurfaceID    /**@}*/    AV_PIX_FMT_VAAPI = AV_PIX_FMT_VAAPI_VLD,#else    /**     *  Hardware acceleration through VA-API, data[3] contains a     *  VASurfaceID.     */    AV_PIX_FMT_VAAPI,#endif    AV_PIX_FMT_YUV420P16LE,  ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian    AV_PIX_FMT_YUV420P16BE,  ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian    AV_PIX_FMT_YUV422P16LE,  ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian    AV_PIX_FMT_YUV422P16BE,  ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian    AV_PIX_FMT_YUV444P16LE,  ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian    AV_PIX_FMT_YUV444P16BE,  ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian#if FF_API_VDPAU    AV_PIX_FMT_VDPAU_MPEG4,  ///< MPEG-4 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers#endif    AV_PIX_FMT_DXVA2_VLD,    ///< HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer    AV_PIX_FMT_RGB444LE,  ///< packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined    AV_PIX_FMT_RGB444BE,  ///< packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian,    X=unused/undefined    AV_PIX_FMT_BGR444LE,  ///< packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined    AV_PIX_FMT_BGR444BE,  ///< packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian,    X=unused/undefined    AV_PIX_FMT_YA8,       ///< 8 bits gray, 8 bits alpha    AV_PIX_FMT_Y400A = AV_PIX_FMT_YA8, ///< alias for AV_PIX_FMT_YA8    AV_PIX_FMT_GRAY8A= AV_PIX_FMT_YA8, ///< alias for AV_PIX_FMT_YA8    AV_PIX_FMT_BGR48BE,   ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big-endian    AV_PIX_FMT_BGR48LE,   ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as little-endian    /**     * The following 12 formats have the disadvantage of needing 1 format for each bit depth.     * Notice that each 9/10 bits sample is stored in 16 bits with extra padding.     * If you want to support multiple bit depths, then using AV_PIX_FMT_YUV420P16* with the bpp stored separately is better.     */    AV_PIX_FMT_YUV420P9BE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian    AV_PIX_FMT_YUV420P9LE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian    AV_PIX_FMT_YUV420P10BE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian    AV_PIX_FMT_YUV420P10LE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian    AV_PIX_FMT_YUV422P10BE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian    AV_PIX_FMT_YUV422P10LE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian    AV_PIX_FMT_YUV444P9BE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian    AV_PIX_FMT_YUV444P9LE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian    AV_PIX_FMT_YUV444P10BE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian    AV_PIX_FMT_YUV444P10LE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian    AV_PIX_FMT_YUV422P9BE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian    AV_PIX_FMT_YUV422P9LE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian    AV_PIX_FMT_VDA_VLD,    ///< hardware decoding through VDA    AV_PIX_FMT_GBRP,      ///< planar GBR 4:4:4 24bpp    AV_PIX_FMT_GBR24P = AV_PIX_FMT_GBRP, // alias for #AV_PIX_FMT_GBRP    AV_PIX_FMT_GBRP9BE,   ///< planar GBR 4:4:4 27bpp, big-endian    AV_PIX_FMT_GBRP9LE,   ///< planar GBR 4:4:4 27bpp, little-endian    AV_PIX_FMT_GBRP10BE,  ///< planar GBR 4:4:4 30bpp, big-endian    AV_PIX_FMT_GBRP10LE,  ///< planar GBR 4:4:4 30bpp, little-endian    AV_PIX_FMT_GBRP16BE,  ///< planar GBR 4:4:4 48bpp, big-endian    AV_PIX_FMT_GBRP16LE,  ///< planar GBR 4:4:4 48bpp, little-endian    AV_PIX_FMT_YUVA422P,  ///< planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)    AV_PIX_FMT_YUVA444P,  ///< planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)    AV_PIX_FMT_YUVA420P9BE,  ///< planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian    AV_PIX_FMT_YUVA420P9LE,  ///< planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian    AV_PIX_FMT_YUVA422P9BE,  ///< planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian    AV_PIX_FMT_YUVA422P9LE,  ///< planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian    AV_PIX_FMT_YUVA444P9BE,  ///< planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian    AV_PIX_FMT_YUVA444P9LE,  ///< planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian    AV_PIX_FMT_YUVA420P10BE, ///< planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)    AV_PIX_FMT_YUVA420P10LE, ///< planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)    AV_PIX_FMT_YUVA422P10BE, ///< planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)    AV_PIX_FMT_YUVA422P10LE, ///< planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)    AV_PIX_FMT_YUVA444P10BE, ///< planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)    AV_PIX_FMT_YUVA444P10LE, ///< planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)    AV_PIX_FMT_YUVA420P16BE, ///< planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)    AV_PIX_FMT_YUVA420P16LE, ///< planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)    AV_PIX_FMT_YUVA422P16BE, ///< planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)    AV_PIX_FMT_YUVA422P16LE, ///< planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)    AV_PIX_FMT_YUVA444P16BE, ///< planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)    AV_PIX_FMT_YUVA444P16LE, ///< planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)    AV_PIX_FMT_VDPAU,     ///< HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface    AV_PIX_FMT_XYZ12LE,      ///< packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as little-endian, the 4 lower bits are set to 0    AV_PIX_FMT_XYZ12BE,      ///< packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big-endian, the 4 lower bits are set to 0    AV_PIX_FMT_NV16,         ///< interleaved chroma YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)    AV_PIX_FMT_NV20LE,       ///< interleaved chroma YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian    AV_PIX_FMT_NV20BE,       ///< interleaved chroma YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian    AV_PIX_FMT_RGBA64BE,     ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian    AV_PIX_FMT_RGBA64LE,     ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian    AV_PIX_FMT_BGRA64BE,     ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian    AV_PIX_FMT_BGRA64LE,     ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian    AV_PIX_FMT_YVYU422,   ///< packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb    AV_PIX_FMT_VDA,          ///< HW acceleration through VDA, data[3] contains a CVPixelBufferRef    AV_PIX_FMT_YA16BE,       ///< 16 bits gray, 16 bits alpha (big-endian)    AV_PIX_FMT_YA16LE,       ///< 16 bits gray, 16 bits alpha (little-endian)    AV_PIX_FMT_GBRAP,        ///< planar GBRA 4:4:4:4 32bpp    AV_PIX_FMT_GBRAP16BE,    ///< planar GBRA 4:4:4:4 64bpp, big-endian    AV_PIX_FMT_GBRAP16LE,    ///< planar GBRA 4:4:4:4 64bpp, little-endian    /**     *  HW acceleration through QSV, data[3] contains a pointer to the     *  mfxFrameSurface1 structure.     */    AV_PIX_FMT_QSV,    /**     * HW acceleration though MMAL, data[3] contains a pointer to the     * MMAL_BUFFER_HEADER_T structure.     */    AV_PIX_FMT_MMAL,    AV_PIX_FMT_D3D11VA_VLD,  ///< HW decoding through Direct3D11, Picture.data[3] contains a ID3D11VideoDecoderOutputView pointer    /**     * HW acceleration through CUDA. data[i] contain CUdeviceptr pointers     * exactly as for system memory frames.     */    AV_PIX_FMT_CUDA,    AV_PIX_FMT_0RGB=0x123+4,///< packed RGB 8:8:8, 32bpp, XRGBXRGB...   X=unused/undefined    AV_PIX_FMT_RGB0,        ///< packed RGB 8:8:8, 32bpp, RGBXRGBX...   X=unused/undefined    AV_PIX_FMT_0BGR,        ///< packed BGR 8:8:8, 32bpp, XBGRXBGR...   X=unused/undefined    AV_PIX_FMT_BGR0,        ///< packed BGR 8:8:8, 32bpp, BGRXBGRX...   X=unused/undefined    AV_PIX_FMT_YUV420P12BE, ///< planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian    AV_PIX_FMT_YUV420P12LE, ///< planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian    AV_PIX_FMT_YUV420P14BE, ///< planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian    AV_PIX_FMT_YUV420P14LE, ///< planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian    AV_PIX_FMT_YUV422P12BE, ///< planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian    AV_PIX_FMT_YUV422P12LE, ///< planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian    AV_PIX_FMT_YUV422P14BE, ///< planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian    AV_PIX_FMT_YUV422P14LE, ///< planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian    AV_PIX_FMT_YUV444P12BE, ///< planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian    AV_PIX_FMT_YUV444P12LE, ///< planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian    AV_PIX_FMT_YUV444P14BE, ///< planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian    AV_PIX_FMT_YUV444P14LE, ///< planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian    AV_PIX_FMT_GBRP12BE,    ///< planar GBR 4:4:4 36bpp, big-endian    AV_PIX_FMT_GBRP12LE,    ///< planar GBR 4:4:4 36bpp, little-endian    AV_PIX_FMT_GBRP14BE,    ///< planar GBR 4:4:4 42bpp, big-endian    AV_PIX_FMT_GBRP14LE,    ///< planar GBR 4:4:4 42bpp, little-endian    AV_PIX_FMT_YUVJ411P,    ///< planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV411P and setting color_range    AV_PIX_FMT_BAYER_BGGR8,    ///< bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */    AV_PIX_FMT_BAYER_RGGB8,    ///< bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */    AV_PIX_FMT_BAYER_GBRG8,    ///< bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */    AV_PIX_FMT_BAYER_GRBG8,    ///< bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */    AV_PIX_FMT_BAYER_BGGR16LE, ///< bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */    AV_PIX_FMT_BAYER_BGGR16BE, ///< bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */    AV_PIX_FMT_BAYER_RGGB16LE, ///< bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */    AV_PIX_FMT_BAYER_RGGB16BE, ///< bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */    AV_PIX_FMT_BAYER_GBRG16LE, ///< bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */    AV_PIX_FMT_BAYER_GBRG16BE, ///< bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */    AV_PIX_FMT_BAYER_GRBG16LE, ///< bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */    AV_PIX_FMT_BAYER_GRBG16BE, ///< bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */#if !FF_API_XVMC    AV_PIX_FMT_XVMC,///< XVideo Motion Acceleration via common packet passing#endif /* !FF_API_XVMC */    AV_PIX_FMT_YUV440P10LE, ///< planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian    AV_PIX_FMT_YUV440P10BE, ///< planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian    AV_PIX_FMT_YUV440P12LE, ///< planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian    AV_PIX_FMT_YUV440P12BE, ///< planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian    AV_PIX_FMT_AYUV64LE,    ///< packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian    AV_PIX_FMT_AYUV64BE,    ///< packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), big-endian    AV_PIX_FMT_VIDEOTOOLBOX, ///< hardware decoding through Videotoolbox    AV_PIX_FMT_P010LE, ///< like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian    AV_PIX_FMT_P010BE, ///< like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian    AV_PIX_FMT_GBRAP12BE,  ///< planar GBR 4:4:4:4 48bpp, big-endian    AV_PIX_FMT_GBRAP12LE,  ///< planar GBR 4:4:4:4 48bpp, little-endian    AV_PIX_FMT_GBRAP10BE,  ///< planar GBR 4:4:4:4 40bpp, big-endian    AV_PIX_FMT_GBRAP10LE,  ///< planar GBR 4:4:4:4 40bpp, little-endian    AV_PIX_FMT_MEDIACODEC, ///< hardware decoding through MediaCodec    AV_PIX_FMT_GRAY12BE,   ///<        Y        , 12bpp, big-endian    AV_PIX_FMT_GRAY12LE,   ///<        Y        , 12bpp, little-endian    AV_PIX_FMT_GRAY10BE,   ///<        Y        , 10bpp, big-endian    AV_PIX_FMT_GRAY10LE,   ///<        Y        , 10bpp, little-endian    AV_PIX_FMT_P016LE, ///< like NV12, with 16bpp per component, little-endian    AV_PIX_FMT_P016BE, ///< like NV12, with 16bpp per component, big-endian    AV_PIX_FMT_NB         ///< number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of formats might differ between versions};
swscale的用法其实还可以参照swscale-example.c来学习使用,主要用到如下三个函数:

av_warn_unused_resultint sws_init_context(struct SwsContext *sws_context, SwsFilter *srcFilter, SwsFilter *dstFilter);/** * Free the swscaler context swsContext. * If swsContext is NULL, then does nothing. */void sws_freeContext(struct SwsContext *swsContext);/** * Allocate and return an SwsContext. You need it to perform * scaling/conversion operations using sws_scale(). * * @param srcW the width of the source image * @param srcH the height of the source image * @param srcFormat the source image format * @param dstW the width of the destination image * @param dstH the height of the destination image * @param dstFormat the destination image format * @param flags specify which algorithm and options to use for rescaling * @param param extra parameters to tune the used scaler *              For SWS_BICUBIC param[0] and [1] tune the shape of the basis *              function, param[0] tunes f(1) and param[1] f´(1) *              For SWS_GAUSS param[0] tunes the exponent and thus cutoff *              frequency *              For SWS_LANCZOS param[0] tunes the width of the window function * @return a pointer to an allocated context, or NULL in case of error * @note this function is to be removed after a saner alternative is *       written */struct SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,                                  int dstW, int dstH, enum AVPixelFormat dstFormat,                                  int flags, SwsFilter *srcFilter,                                  SwsFilter *dstFilter, const double *param);
/** * Scale the image slice in srcSlice and put the resulting scaled * slice in the image in dst. A slice is a sequence of consecutive * rows in an image. * * Slices have to be provided in sequential order, either in * top-bottom or bottom-top order. If slices are provided in * non-sequential order the behavior of the function is undefined. * * @param c         the scaling context previously created with *                  sws_getContext() * @param srcSlice  the array containing the pointers to the planes of *                  the source slice * @param srcStride the array containing the strides for each plane of *                  the source image * @param srcSliceY the position in the source image of the slice to *                  process, that is the number (counted starting from *                  zero) in the image of the first row of the slice * @param srcSliceH the height of the source slice, that is the number *                  of rows in the slice * @param dst       the array containing the pointers to the planes of *                  the destination image * @param dstStride the array containing the strides for each plane of *                  the destination image * @return          the height of the output slice */int sws_scale(struct SwsContext *c, const uint8_t *const srcSlice[],              const int srcStride[], int srcSliceY, int srcSliceH,              uint8_t *const dst[], const int dstStride[]);
当然真正干活的当然是 sws_scale 函数了,具体函数参数可以自行看下具体定义,上面贴的代码里面有,需要注意的是第四个参数srcSliceY 这个代表的是第一列要处理的位置,如果要从头开始处理,直接填0即可,下面有一个完整的栗子,我也会上传到github上面,可以下载。

2. 实例

直接上代码了。。。

/** copyright (c) 2017 老衲不出家** 2017-08-11**/#include 
#include
#include
extern "C"{#include "libswscale/swscale.h" #include "libavutil/pixfmt.h"}const char *srcFileName = "ds_480x272.yuv";const char *dstFileName = "ds_720x576.yuv";int main(){ // 設定原始 YUV 的長寬 const int in_width = 480; const int in_height = 272; // 設定目的 YUV 的長寬 const int out_width = 720; const int out_height = 576; const int read_size = in_width * in_height * 3 / 2; const int write_size = out_width * out_height * 3 / 2; struct SwsContext *img_convert_ctx = nullptr; uint8_t *inbuf[4]; uint8_t *outbuf[4]; int inlinesize[4] = { in_width, in_width / 2, in_width / 2, 0 }; int outlinesize[4] = { out_width, out_width / 2, out_width / 2, 0 }; uint8_t *ptr_src_yuv_buf = nullptr; uint8_t *ptr_dst_yuv_buf = nullptr; ptr_src_yuv_buf = new uint8_t[in_width * in_height * 3/2]; ptr_dst_yuv_buf = new uint8_t[out_width * out_height * 3 /2]; FILE *fin = fopen(srcFileName, "rb"); FILE *fout = fopen(dstFileName, "wb"); if (fin == NULL) { fprintf(stderr, "open input file %s error.\n", srcFileName); return -1; } if (fout == NULL) { fprintf(stderr, "open output file %s error.\n", dstFileName); return -1; } inbuf[0] = (uint8_t *)malloc(in_width*in_height); inbuf[1] = (uint8_t *)malloc(in_width*in_height >> 2); inbuf[2] = (uint8_t *)malloc(in_width*in_height >> 2); inbuf[3] = NULL; outbuf[0] = (uint8_t *)malloc(out_width*out_height); outbuf[1] = (uint8_t *)malloc(out_width*out_height >> 2); outbuf[2] = (uint8_t *)malloc(out_width*out_height >> 2); outbuf[3] = NULL; // ********* Initialize software scaling ********* // ********* sws_getContext ********************** img_convert_ctx = sws_getContext(in_width, in_height, AV_PIX_FMT_YUV420P, out_width, out_height, AV_PIX_FMT_YUV420P, SWS_POINT, nullptr, nullptr, nullptr); if (img_convert_ctx == NULL) { fprintf(stderr, "Cannot initialize the conversion context!\n"); return -1; } int32_t in_y_size = in_width*in_height; int32_t out_y_size; bool bExit = false; while (!bExit) { if ((fread(ptr_src_yuv_buf, 1, read_size, fin) < 0) || (feof(fin))) { bExit = true; break; } memcpy(inbuf[0], ptr_src_yuv_buf, in_y_size); memcpy(inbuf[1], ptr_src_yuv_buf + in_y_size, in_y_size/4); memcpy(inbuf[2], ptr_src_yuv_buf + in_y_size*5/4, in_y_size / 4); // ********* 主要的 function ****** // ********* sws_scale ************ sws_scale(img_convert_ctx, inbuf, inlinesize, 0, in_height, outbuf, outlinesize); memcpy(ptr_dst_yuv_buf, outbuf[0], out_width*out_height); memcpy(ptr_dst_yuv_buf + out_width*out_height, outbuf[1], out_width*out_height >> 2); memcpy(ptr_dst_yuv_buf + (out_width*out_height * 5 >> 2), outbuf[2], out_width*out_height >> 2); fwrite(ptr_dst_yuv_buf, 1, write_size, fout); } // ********* 結束的 function ******* // ********* sws_freeContext ******* sws_freeContext(img_convert_ctx); fclose(fin); fclose(fout); delete[] ptr_src_yuv_buf; ptr_src_yuv_buf = nullptr; delete[] ptr_dst_yuv_buf; ptr_dst_yuv_buf = nullptr; return 0;}

整体就是输入一个yuv文件,然后放大,当然这个函数还可以进行其他很多操作。

git地址:https://github.com/tanningzhong/ffmpeg-sws_scale

转载地址:http://hjzoi.baihongyu.com/

你可能感兴趣的文章
MySQL数据库SQL优化第五篇:确定问题使用索引提高查询效率
查看>>
MYSQL数据库中SQL优化第六篇:索引无效的使用场景
查看>>
IntelliJ IDEA 中 右键新建时,选项没有Java class的解决方法和具体解释
查看>>
MySQL数据库SQL优化第七篇:查看索引使用情况
查看>>
MySQL数据库SQL优化第八篇:介绍两个简单实用的优化方法
查看>>
MySQL数据库SQL语句之优化INSERT语句
查看>>
MySQL数据库SQL优化之order by 语句
查看>>
MySQL数据库SQL优化之GROUP BY 语句和优化嵌套查询
查看>>
This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its de 错误解决办法
查看>>
mybatis中使用Oracle和mysql的批量插入区别
查看>>
mybatis中oracle做数组批量修改
查看>>
checkbox选中获取一行中某个列的值
查看>>
获取元素的id和id赋值
查看>>
MySQL的存储过程和函数入门 第一篇
查看>>
springMVC+JSP+jQuery做分页查询示例
查看>>
POI技术处理Excel表 .xls ..xlsx两种格式的导入操作
查看>>
Apache POI实现Excel文件导出
查看>>
mysql 存储过程和函数中光标的使用
查看>>
【数据结构与算法】------冒泡排序
查看>>
【数据结构与算法】 ---快速排序
查看>>